
International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 10

RESEARCH ARTICLE

Vulnerability Exploitations Using Steganography in

PDF Files

Istteffanny Isloure Araujo

Intelligent Systems Research Center, London Metropolitan University, United Kingdom

i.araujo@londonmet.ac.uk

Hassan Kazemian

Intelligent Systems Research Center, London Metropolitan University, United Kingdom

h.kazemian@londonmet.ac.uk

Published online: 20 February 2020

Abstract – This article analyses the ways malicious executable

files hides with Steganography on the most used files of our daily

basis such as PDF, Word, Text, and Image. It demonstrates how

data is hidden and gathers innovative ways of identifying

potential attacks to prevent them by engaging the safety and

exploitation of files distributed online. It is concerned with

infected files that can have malicious executable applications

embedded, executing itself upon the opening of the original file.

Several experiments are detailed exploiting gaps in PDF, email

and image files in order to draw awareness to security

professionals and Ethical hackers’ trainees.

Index Terms – Digital Attacks, Email Security, Ethical Hacking,

PDF Security, Steganography.

1. INTRODUCTION

Steganography derives from Ancient Greek, merely meaning

“information hiding”, and used to secret camouflage messages

during conflicts [1]. Today, Steganography applies to media

database systems, digital content access control, data

alteration protection, confidential communication and secret

storage [2] within the text, video, audio and image files. This

current research will involve identifying Steganography used

to incorporate malicious executable files to the most used file

extension, PDF (Portable Document Format); hence, we will

study secret storage. We will learn more about PDF once we

have the foundations for Steganography in the next chapter.

There are different types of Steganography algorithms

described below.

1.1. Pure Steganography

It is independent of a Stego Key, i.e., once the algorithm, is

known, the data can also be extracted, carrying underlying

security [3].

1.2. Private Key Steganography

It depends on a Symmetric Key, i.e., the same “password”

hides and uncovers the secrecy, carrying moderate security

[4].

1.3. Public Key Steganography

It uses distinct Stego Keys at each end. It has higher leverage

of Security [5].

Computer criminals use steganography in order to secure

illegal activities such as paedophilia, intellectual property

breaches, viruses, harassment, pornography, hacking, fraud,

gambling and criminal communications [6]. The process of

identifying Steganography on documents and applications is

called Steganalysis [7].

Between other Steganography and Cryptography differences,

Steganography works on hiding the data, so it is not visible to

a third party while Cryptography does not necessarily worry

about hiding the data but about making it unreadable.

Steganography consists of hiding some content inside another,

and Steganalysis is the process of identifying Steganography

itself. It is important to note that Steganalysis does not reveal

the hidden message identified [8]. To uncover the hidden text,

we apply Cryptography which includes the studies of how to

break mathematical algorithms within secret communications.

At first, we will be using PDF files as a case study to identify

and stop possible bugs on PDF documents to protect data and

avoid breaches of privacy, concentrating mainly on the three

points below.

 Analysis of how malicious data is embedded in PDF.

 Identification of sections that could contain

Steganography applications.

 Simple tools used to hide information on the background

of a file.

Chapter 2 will detail more Steganography Principals, PDF

files and the current methodology adopted in Chapter 3.

Chapter 4 describe the main initial Steganography

experiments accomplished for the research, while Chapter 5

summaries our findings, followed by all references used.

mailto:i.araujo@londonmet.ac.uk

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 11

RESEARCH ARTICLE

2. RELATED WORK

Steganography can improve security if used for protecting

confidential data, but can also be used to breach security when

the content is hidden is illegal and used to hide executable

application that can steal somebody’s password [9, 10] for

this reason we will analyse how and where criminals can

exploit this file format to draw attention and reinforce security

on this specific areas.

2.1. PDF Files

The Portable Document Format used to present documents

independent of applications since 1993 from which it evolved

to version 9 by Adobe where permissions (Digital Rights

Management), passwords and encryption (MD5, RC4: 40-bit

and 128 -bit) have adopted and improved further on

documents especially to comply with security weaknesses

[11].

PDF documents contain some scripts programmed in

JavaScript and XML to structure the document as well as

PostScript for generating layout and graphics and its data

compression technology [11]. Two different layouts are in

place today for PDF, the linear and non-linear which

consumes less space [12], and it can also contain audio for

disabled people.

2.1.1. Basic Security on PDF

The security in place today on Adobe PDFs also explained by

Application Level using SSl& Cookies, Network Level using

Firewalls &SSL and Physical Level using Permissions &

Monitoring. On the 25th March 2015, Adobe has made

available a new security update especially to help to cope with

the execution of code. The most common form of security on

PDFs is encryption via public-key cryptography and digital

signature for authentication. The passwords (owner or user)

will restrict whether the document can print, copy, delete,

import, export and modify [13], however depending on the

strength of the password and encryption, hacking may occur

[14].

2.1.2. Most Common PDF Vulnerability

The most discussed vulnerability of PDFs nowadays is the

way it attaches on emails and webpages configured to start

even if secure browsers and antivirus are in place and also the

RC4 itself substituted with the modern AES-256 algorithm

has also started to be used from PDF 1.7 version to avoid the

weaknesses of password checking algorithm exploited by

brute force attack previously [15]. On the 25th of this month,

Adobe has made available a new security update especially to

help to cope with the execution of code. Another known

unexpected attack by PDF is when the application suddenly

crashes, and the attacker takes control of the computer [16].

Guidelines to make users more precautious and one of the

fixes is disabling JavaScript and not opening PDF from

unknown sources which it is unfeasible nowadays.

2.1.3. PDF and Steganography Attacks

Steganography hides the virus on PDF by adding an image

and Digital Watermarking to the file which carries and hides

the virus [17]. We shall investigate some of the algorithms

used to generate PDF and how the virus hides on this type of

file in order to produce an application that can identify and

avoid such practices [18]. The way the PDF document is

structure has space for hiding code [19].

2.1.3.1. Known PDF Exploitation Steganographic

Techniques and Identification Methods

2.1.3.1.1. Analysing the TJ Spaces

Apart from using the end of the objectives on the File

Structure of PDF as per Figure 1, it uses the space between

the characters to hide text. An example of this approach

described in the following algorithm which uses the StegoPDf

software to embed data, although very efficient as there is a

limited amount of empty spaces we could use, and capacity is

an issue.

Figure 1. Structure of PDF [20]

2.1.3.1.2. Predicting & Extracting JavaScript (Extraction

Algorithm)

Gathering JavaScript Unsecure Code to hide malicious

programs. The PDF file has gaps within the code data, and

malicious code can be embedded [21]. The figure below

states how a simple PDF file formed. For every end of the

object as in the figure above and in between objects, we can

utilise the space the PDF language does not read to hide data

[22]. Further demonstrated in Session 2.2.3.4, where we

provide a sample PDF code with data hidden in between the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 12

RESEARCH ARTICLE

objects with a JavaScript code embedded. The identification

technique predicts and extracts JavaScript from the PDF code.

2.1.3.1.3. Statistical Analysis (Anomaly Based Detection)

Statistical Analysis is achieved using Mathematical

Algorithms to encode data. A common way to detect

Steganography is Steganalysis which investigates weather

Steganography is present on a document. As an example to

Statistical Analysis to embed and detect hidden data, we use

Jackson [23] research which started to build what he has

called a CIS (Computation Immune System) to detect hidden

data and improve security on JPG files. Furthermore, this

technique mathematically determines the number of

occurrence of substitution encoded using pattern recognition,

neural networks and generic algorithms mainly [23].

2.1.3.1.4. Dynamic Analysis (detectable pattern):

Dynamically analysing patterns of insecure data. This

approach mainly uses intelligent software to analyse and

detect malicious behaviour of a file, applying machine

learning algorithms, including analysis of Digital Signatures,

insecure loading, integration and component usage.

2.1.3.1.5. Analyse of Metadata

It investigates Metadata to discover hidden data. Metadata is

the header of a file itself — it holders crucial information as

to the location of the clusters of the file, logging and security

settings. Steganography is made possible here by hiding

information inside specific clusters [24].

2.1.3.1.6. Structural Analysis

It looks top to bottom to find hidden data. This technique

uses of Forensics Tools such the EnCase to perform

Steganalysis on the file. Freeware like Stegdetect will work

just fine with JPEG file formats [25]. EnCase lets the

examiner search through the files simultaneously and give the

capability of reconstructing broken links and extracting

hidden text found [26, 27].

2.1.3.1.7. Substitution of bytes using xor

It uses the xor algorithm to embed data. The xor algorithm

swap a bit unit to another to embed a secret message. The

advantage of this is that the memory used will remain the

same as it is a simple swap, while the disadvantages relate to

its simplicity, making it easier for computers to undo the

algorithm and find the data hidden. The following illustration

demonstrates the XOR substitution algorithm.

2.1.3.1.8. Compress so more comfortable to hide

It compresses the document and embeds data. Compressing

data has proven to make files easier to hide using a

compressing software like 7 Zip Portable, which is freely

available. Files can hide inside a JPEG image per example,

as shown in Figure 2, only by typing one line of code on

Command Prompt.

Figure 2. Hiding Files inside an Image Using Compression

2.1.3.2. Technologies used on PDF Files

PDF Files can contain several technologies embedded such as

PGP, JavaScript, XML, HTML, SOAP, Compression and

Encryption. Pretty Good Privacy is used on PDF to secure

data; JavaScript is added to PDF files mainly to create forms

and interactive data [28]. Malicious coders can exploit this

capability to send a virus to victims' computers to as an

example eavesdrop sensitive data.

XML is the extensible mark-up language and provides the

PDF document with the linkage with the web. The FDF was

an XML adapted language to use within PDF files; however,

new updates of PDF use plain XML to combine form data

sent to a server. HTML and the improved XHTML has been

combined and became XForms used on PDF, which is defined

from XML as well [29]. SOAP is also XML derived, and its

structure highlighted in Figure 3 is very similar to the PDF

one.

Compression reduces the size of the PDF file and adjusts it to

previous versions of PDF software, making makes it easier to

email documents, especially with multimedia applications

embedded [31]. PDF files can be encrypted, MD5 hashes

can verify the file. Files can be password protected; however,

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 13

RESEARCH ARTICLE

there is current software that can remove the applied security

of PDF files easily. This topic needs further research, and it

analysed in more detail as the research progress.

Figure 3. SOAP Structure (Adapted from Walker & Thomas

[30]).

2.1.3.3. Identified Software to combine Steganography and

PDF Files

Other examples of Steganography software used on specific

file formats in files are JPHide, OutGuess, F5, AppendX,

Camouflage and Tripwire for servers (detect and alert of

changes).

2.1.3.4. Initial PDF Source Code with Hidden Message

The programming code 1 is the first attempt to create a PDF

file from scratch with hidden text and code placed

strategically at the End of Object and End of File where the

document supposed to ignore.

%PDF

obj

 >>

endobj

//Malicious Code --> PHP Code hidden at the End of Object.

 (Supposedly an ordinary PDF) Tj

end stream

endobj

//Keylogger Code -> JavaScript hidden at End of Object.

%%EOF

Again, the secret message - > Hidden Message after the End

of File where compiler ignores it.

Programming Code 1 Writing a PDF

3. PROPOSED MODELLING

The chosen methodology used a way to prevent the

exploitation of PDF files using Steganography. The

experimental studying on Steganography broadens the

knowledge on security vulnerabilities of PDF files and email

systems used to distribute such files. We provided details of

how to develop ways of preventing malicious applications

interception after completing a set of experiments, using

RUP/USDP methodology for the developing of any

application that born from this study. PDF files are

commonly available, accepted and distributed in different OSs

and mobile devices, therefore, to detect current vulnerabilities

to improve security on a day to day file format together with

email systems used to carry it is essential. For this reason,

understanding PDF vulnerabilities it is the best way to avoid

attacks.

The Methodology to develop the “framework” does not

necessarily need to be RUP/USDP. Depending on the

solution to the problem, we may use another methodology

such as DSDM for more dynamic development; however, we

shall use Java derived languages such as JavaScript, JSP or

Python to build the security application as these are the most

commonly used and available languages, so the focus is “How

to combat the PDF virus Interception by Criminals Motivated

on stealing Personal Data? Can Steganography benefit such

an activity?”.

For accomplishing this goal, we have started intense

Literature Research focusing on the most recent papers and

articles but noting down what has been considered in the past

to overcome previous vulnerabilities. The research question

is broaden at present, and this as well tends to be more

specific once we have gained more knowledge of the subject

area in terms of what other researchers studying the same area

are exploiting.

Another point we must make here is the fact that we will be

dealing with investigation and gathering of sensitive

information from which we do not aim to use our own private

devices and not experimenting on the general public;

therefore, we must make clearer that our method of gathering

data will not analyse sensitive data from people not involved

with this research nor people indirectly involved and

principal readers.

4. RESULTS AND DISCUSSIONS

The initial results accomplished in our research described

below. We started by learning how to code a PDF from

scratch and where messages and applications hides, then we

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 14

RESEARCH ARTICLE

have identified the most straightforward way to embed files

on PDF using free software commonly available. We

finalised by accomplishing what the software vendors tagged

as not possible, by identifying our first vulnerability on PDF

documents and emails used to distribute the file.

4.1. Experiments Explained

4.1.1. Hidden Text on PDF Code directly on the code

The first experiment we made was how to hide a message on

PDF documents. We have used the PDF language to write

down the PDF document from scratch, and we utilised the

technique of hiding data after the end of files and end of an

object.

Figure 4. PDF Embedding Hidden Message

Figure 4 shows us a PDF File with hidden messages on it,

create inside the code for the document. Note that there is

no attachment for this document as the hidden message in on

the code itself. In the PDF code, we can also embed

JavaScript programs to execute when the PDF is open, but

now current experiments on this did not work for us, as it

differs from PDF versions and other resources.

Figure 5. Hidden Data at the End of an Object

Opening the file with a text editor, we can provide two

examples of where we can hide data as per Figures 5 and 6.

The message is hidden at the end of a random object on the

PDF code while below, we have hidden the message after the

End of File (EOF) which are place holders the PDF language

ignore and people who are viewing the PDF cannot see the

message hidden.

Figure 6. Hidden Message at the End of the File

4.1.2. Hidden Word and other file on PDF

With specific software, we can easily hide another file on

PDF, per example, a word file with .doc extension. We have

accomplished this using the software FoxitPhantomPDF

presented in Figure 7, which lets us attach files to PDF as

well as make it hidden. Plus, using the latest version of

FoxitPhantomPDF, we can easily attach a file by clicking on

the attachment icon on the left and selecting the desired file

from any archives.

Figure 7. Embedding a Word File inside a PDF

After adding the file, it shows on the attached menu, but it

hides the document by clicking on the attached icon, to hide

the window. This way at first, the user does not know the

PDF has a word document embedded on it. We can also hide

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 15

RESEARCH ARTICLE

an image file on PDF with the same software described

above, by attaching the file and making it hidden using Fox

PhantomPDF in the same way we did for the word file with

the ".doc" extension. Current versions of PDF do not allow

us to embed executable files on PDF. The security team are

working daily to identify and eradicate any security gaps. If

this is attempted, a pop up will alert the user. Adding an

application to PDF and making it execute on the victim's

computer was a well-known type of virus that current

versions of PDFs tried to abolish. For this reason, due to

security issues, the feature is disabled hence we have tested if

we could potentially embed our "malicious" application to

other file types and then add it to the PDF document.

4.1.3. Hidden Executable File on Image, Could not Email

Initially. Then used Compression Techniques

In this experiment, we have hidden an executable file inside

an image by playing with the properties of the file. In this

case, we create a shortcut for the file and change its properties

to make it execute an application every time the image is

open, pointing the original file to an executable one like in the

example below:

C:\WINDOWS\System32\cmd.exe/c filename

For the executable file, we would mask it to look like an

image file by changing its shortcut image to:

%SystemRoot%\System32\SHELL32.dll

Making sure the executable file is not visible with the

following Programming Code 2:

If (this.rawValue ==0){

Xfa resolve Note (“Page4”).

Presence= “hidden”;

} else{

Xfa.resolveNote (“Page4”).presence= “visible”;

}

Programming Code 2. Hiding Executable File Script.

With the above experiment, we were unable to send the file

via email as the email has identified the executable file even

though; we have experimented sending the image inside a

ZIP file.

As per Figure 8, we have pointed TestFile.exe to execute

when opening anything.jpg and then hidden TestFile.exe and

zipped both inside a zip file to see if we could email it.

However, using the previous experiment from Session 2.2.3.1

under unit 8 demonstrated with 7 Zip software using

compression techniques, we managed to successfully email

the "NewImage" file with hidden contents inside illustrated in

Figure 9.

Figure 8. Masking an Executable inside an Image

Figure 9. JPEG Filed Emailed with Executable and Other

Files

4.1.4. Simulated simple email on PHP with attachments

After trying to email the hidden executable file with emails

and it did not allow us, another experiment was to code the

email in PHP to see if it would be possible to attach an

executable file and send to an existing email using this

method. It is easy to code and send an email with text only,

but executable attachments included is a step further for

criminals and information security professionals to identify

and stop.

4.1.5. Hidden Exec on zipping then on PDF then sent by

email

The last experiment we accomplished and managed to achieve

a good result was using the Foxit PhantomPDF as well, we

have found out that if we ZIP an executable file first, we can

easily attach to the PDF document and we can email without

any problems or change of settings. Since we are emailing a

PDF file extension, emails do not recognise that there is an

attached ZIP file with an embedded EXE file shown in Figure

10, finding no harms.

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 16

RESEARCH ARTICLE

We started by zipping our executable file. We can potentially

change the name of the file to make it less suspicious in case

of the victim gain visibility of it, but in this example, we have

kept it the original zip name. After zipping the executable

file, it embeds in the PDF document. At the Appendix of this

report, we can note down an email chat we had with the

software representatives which reassured that it is not

possible to embed an executable file on PDF using the

software, but we have proven otherwise.

Figure 10. Zipped Executable File

The file can be seen in the attachment tab, proving we can still

embed an executable file to a PDF regardless of its security

updates. Again, we can hide the embedded files by clicking

on the attachment icon. Testing if we can email such file

using Gmail email system, we can be disappointed to know

that if the file is too big, we will not be able to send it,

example, if it exceeds 25 megabytes. Therefore, we came to

one disadvantage that the size of the file can make it

suspicious and to send it by email, we will need to either zip

the PDF with the Zip file containing the "Malicious"

application or make sure the attached application is not too

big as the previous attached application was 36Mb.

Figure 11. Attached PDF file with Hidden Executable to

Email

Another point to make here is that the PDF itself which we

have coded from scratch had one word on the body of the

document, so it was not significant. Hence, we have

simulated with an executable file containing the Python Key

logger code. Our executable file is now called

MyTestExecutable.exe, and it is relatively small and easy

attached inside a zip file to the PDF. We have tested with an

ordinary PDF now which would not raise any suspicion. The

zip file with the executable application inside cannot be

emailed by itself as the email system blocks it as seen in

Figure 11. However, we will be using the most acceptable

and straightforward document file to carry this executable

application and be able to email it.

We were able to bypass the PDF and Gmail security by

finally sending the PDF with executable code as per Figure

12.

Figure 12. "Malicious" Application Sent by Email inside PDF

Document After Latest Security Updates to PDFs and Emails

Using our current technique and software, anyone can

accomplish the same results. We have not yet read about

someone using the same technique to distribute the virus with

the latest security updates on PDF files and email systems.

The next step is to research on how to make the executable

file to execute by extracting the application from the zip file

inside the PDF file. We plan to make this by coding using

JavaScript as it is possible to add JavaScript to PDF files

using Foxit PhantomPDF quickly. It works in conjunction

with the JavaScript to open a text file and record keystrokes

from which the following code referenced on WebPages:

<script src="path to code.js">

5. CONCLUSION

This paper demonstrated how important it is for research

professionals to work on prevention of digital crimes which

are challenging to identify without any background measures

implemented by IT Security professionals and Ethical

Hackers. We shall prevent such criminal activity

successfully, protecting our data and sensitive information

once we know what the gaps in the current system are. In

order to achieve the initial experiments successfully, we have

noted down fundamentals of Steganography and concentrated

on PDF and its capabilities as our first case study. For this

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 17

RESEARCH ARTICLE

reason, we started to analyse different ways data hidden in

commonly used files, such as PDF and JPG. We have already

managed to hide text on PDF, as well as to attach documents

to it, including a zipped executable file. As per PDF security

updates, we shall not be able to attach executable files into it

for security reasons; however, our research has proven that

simple tricks can make this possible as per our initial

experiments. We can see that there are gaps in the code where

code is added without displaying the contents inside the PDF

document. These gaps are present at the end of the object

from the PDF code and the end of the file. Sample relevant

codes analysed here and the current adopted methodology was

also present to reinforce how we experimented with the data

and achieved results. Further work includes continuing to

analyse and research different ways of how to prevent the

executable file hidden on the PDF/JPG document to execute

automatically and how to stop eavesdropping information,

such as passwords so the security techniques can continuously

mitigate any such attack from victim’s computer.

REFERENCES

[1] Kessler, G. And Hosmer, C. (2011). Chapter 2 – An Overview of

Steganography. Available:

http://www.sciencedirect.com/science/article/pii/B9780123855107000
023. Last accessed 16th Feb 2020.

[2] Kawaguchi, E. (2015). Applications of Steganography. Available:

http://datahide.org/BPCSe/applications-e.html. Last accessed 16th Feb
2020.

[3] Kwon, T. (2011). Detecting and Analyzing Insecure Component

Integration. Computer Science. 1 (1), p1-146.

[4] Ahn, L. And Hopper, N. (2012). Public-Key Steganography.Computer

Science Dep. 1 (1), p1-18.

[5] Al-Ani, Z et al. (2010). Overview: Main Fundamentals for
Steganography. Available:

http://arxiv.org/ftp/arxiv/papers/1003/1003.4086.pdf. Last accessed

16th Feb 2020.
[6] Judge, J. (2001). Steganography: Past, Present, Future. SANS Institute

InfoSec Reading Room. 2001 (1.2f), 20.

[7] Indika. (2011). Difference Between Cryptography and
Steganography.Available:

http://www.differencebetween.com/difference-between-cryptography-

and-vs-steganography/. Last accessed 16th Feb 2020.
[8] Wayner, P (2009). Disappearing Cryptography. Information Hiding

and Watermarking. 3rd ed. Burlington: Elsevier. p337-353.

[9] Camilleri, K. (2011). A Steganographic Framework: Information
hiding in the Spatial Domain using Digital Images. Available:

http://thesis.klauscamilleri.com/. Last accessed 16th Feb 2020.

[10] Zaidoon, K. et al. (2010). Main Fundamentals for

Steganography.Journal of Computing. 3 (3), p158-163.

[11] Adobe (2006). PDF Reference, sixth edition. Available:

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf
_reference_1-7.pdf. Last accessed 16th Feb 2020.

[12] Roebuck, K. (2012). Electronic Documents: High-impact Strategies -

What to Know: Definitions, Adoptions, Impact, Benefits, Maturity,
Vendors. London: Emereo Publishing. p60-76.

[13] Fletcher, A. (2009). PHP: Sending Email (Text?HTML/Attachments).

Available:
http://webcheatsheet.com/php/send_email_texthtml_attachment.php.

Last accessed 15th May 2015.

[14] Adobe (2008). Document management – Portable document format-
Part 1: PDF 1.7. California: Adobe Systems Incorporated. P45-62.

[15] Stevens, D. (2011). Malicious PDF Documents Explained. Security &

Privacy, IEEE. 9 (1), p80-82.
[16] Adobe. (2014). PDF Reference and Adobe Extensions to the PDF

Specification. Available:

http://www.adobe.com/devnet/pdf/pdf_reference.html. Last accessed
16th Feb 2020.

[17] Borders, K. (2013). Steganography in PDF Files. Available:

http://stackoverflow.com/questions/16111471/steganography-in-pdf-
files. Last accessed 16th Feb 2020.

[18] Stolfo, S. et al. (2013). Research in Attacks, Intrusions, and Defenses.

New York: Portland State University. p204-223.
[19] Srndic, N. And Laskov, P. (2013). Detection of Malicious PDF Files

Based on Hierarchical Document Structure. Internet Society. 1 (1), p1-

18.
[20] Lai, Yin. And Tsai, Wen. (2013). Covert Communication Via Pdf Files

By New Data Hiding Techniques. National Chiao Tung University

Journal. 1 (1), p1-6.

[21] FreeMyPDF. (2015). Removing Passwords and Restrictions from PDF.

Available: http://freemypdf.com/. Last accessed 16th Feb 2020.

[22] W3C. (2012). PDF Techniques for WCAG 2.0. Available:
http://www.w3.org/TR/WCAG20-TECHS/pdf.html. Last accessed

16th Feb 2020.
[23] Jackson, J. et al. (2003). Blind Steganography Detection Using a

Computational Immune System: A Work in Progress. International

Journal of Digital Evidence. 4 (1), p1-19.
[24] PDFlib. (2012). Extensible Metadata Platform (XMP). Available:

http://www.pdflib.com/knowledge-base/xmp-metadata/. Last accessed

16th Feb 2020.
[25] Richer, P. (2003). Steganalysis: Detecting hidden information with

computer forensic analysis. SANS Institute InfoSec Reading Room. 1

(1.4b), p1-13.
[26] Partington, T. (2007). Computer Forensics: Final Report. Software

Engineering. 1 (1), p1-46

[27] Wee, C. (2014). Analysis of hidden data in NTFS file system . Edith
Cowan University Journal. 1 (1), p1-21.

[28] Wikipedea. (2015). Steganography tools. Available:

http://en.wikipedia.org/wiki/Steganography_tools. Last accessed 16th
Feb 2020.

[29] Rosenthol, L. (2001). Using XML and PDF Together, why do not

necessarily have to choose. Available:
http://www.planetpdf.com/planetpdf/pdfs/pdf2k/01W/rosenthol_xmlpd

f.pdf. Last accessed 16th Feb 2020.

[30] Walker, F. And Thoma, G. (2007). A SOAP-Based Tool for User
Feedback and Analysis. National Library of Medicine. 1 (1), p1-10

[31] Zhong, S. et al. (2007). Data Hiding in a Kind of PDF Texts for Secret

Communication. International Journal of Network Security. 4 (1), p17-
23.

Authors

Istteffanny Isloure Araujo received the B.S.c and
M.S.c degrees in Computer Science and Computer

Forensics and IT Security from London Metropolitan

University in 2013 and 2015, respectively. Now, she

is in the Intelligent Systems and Research Centre of

the School of Computing and Digital Media. Her

subject area is Big Data, Digital Security, Copyright
and Privacy using Steganography. She also is an

Associate Lecturer in subjects like Databases,

Fundamentals of Computing, Programming,
Network and Cloud Security, Networks and

Operating Systems, Game Development,

Cybersecurity Fundamentals and Ethical Hacking. Istteffanny has published
two papers entitled “Protecting against eavesdropping on Mobile Phones to

snip data with Information Security Awareness and Steganography principles

“ and “Enhancement of Capacity, Detectability and Distortion of BMP, GIF
and JPEG images with Distributed Steganography” and has other ones

reviewing.

http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-website.htm
http://www.neilstoolbox.com/bibliography-creator/reference-website.htm
http://www.neilstoolbox.com/bibliography-creator/reference-website.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-website.htm
http://www.neilstoolbox.com/bibliography-creator/reference-website.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm
http://www.neilstoolbox.com/bibliography-creator/reference-journal.htm

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/193270 Volume 7, Issue 1, January – February (2020)

ISSN: 2395-0455 ©EverScience Publications 18

RESEARCH ARTICLE

Dr Hassan Kazemian received a B.Sc. in

Engineering from Oxford Brookes University, UK in
1985. He received an M.Sc. in Control Systems

Engineering from the University of East London,

UK in 1987. He followed with a PhD in Learning
Fuzzy Controllers from Queen Mary University of

London, UK, in 1998. He is currently a professor at

London Metropolitan University. He worked for
Ravensbourne College University Sector, UK, as a

senior lecturer for eight years. Previous lecturing

experience includes the University of East London, UK, University of
Northampton, UK, and Newham College, UK. Research interests include AI

and ML applications to cybersecurity. Prof. Kazemian is a Fellow of the

Institution of Engineering and Technology FIET (formerly IEE) UK,
Chartered Engineer (C.Eng.) UK, and Fellow of British Computing Society

(BCS) UK.

